Imagen de portada de Amazon
Imagen de Amazon.com
Vista normal Vista MARC

Álgebra Y Principios Del Análisis Tomo I / Instituto de Ciencias y Humanidades [Impreso]

Por: Tipo de material: TextoTextoIdioma: Es Detalles de publicación: Lima - Perú Lumbreras Editores S.R.L. 2000Edición: 2da ediciónDescripción: 371 páginas. Figuras, Gráficos, Ejercicios Matemáticos,. 01 Ej. Andahuaylas 16.5 x 21.5 cmISBN:
  • 9786034018495
Tema(s): Clasificación CDD:
  • 512 I59 t-I 2000
Contenidos:
Resumen histórico. -- Resumen histórico de las grandes etapas de la matemática. -- La etapa clásico del cercano oriente. -- Los matemáticos árabes y arabizados. -- Los primeros algebristas y los matemáticos del siglo XII al siglo XVI. -- Los matemáticos en el siglo XVII. -- El siglo XVII desarrollo del análisis. -- siglo XIX. -- Siglo XX. -- Las pirámides: Manifestaciones geométricas egipcia. -- Evariste Galois (1811 - 1832). -- Nociones preliminares. -- Adición. -- Sustracción. -- Multiplicación. -- División. -- Ecuaciones y despeje de incógnitas. -- Problemas propuestos. -- Matrices y determinantes. -- Definición previa. -- Exponente natural. -- Exponente cero. -- Exponente negativo. -- Exponente fraccionario. -- Potenciación. -- Definición. -- Radicación en R. -- Definición. -- Teoremas radicación. -- Radicales sucesivos. -- Problemas resueltos. -- Problemas Propuestos. -- Polinomios. -- Conceptos previos. -- Expresión matemática. -- Notación matemática. -- Expresiones algebraicas. -- Termino algebraico. -- Conjunto de valores algebraicos. -- Polinomios. -- Polinomio en una variable. -- Valor numérico en una expresión matemática. -- Cambio de variables. -- Grado de un polinomio. -- Polinomios especiales. -- Problemas resueltos. -- Problemas propuestos. -- División entera de polinomios. -- Identidad fundamental de división entera. -- Casos que se presentan en la división de polinomios. -- Métodos para dividir algebraicamente polinomios. -- Teoremas de ranatus descarte (teorema del resto). -- Problemas resueltos. -- Problemas propuestos. -- Divisibilidad. -- divisibilidad de polinomios cocientes notables. -- Problemas resueltos. -- Problemas propuestos. -- Factorización. -- Campo numérico. -- Polinomio sobre un campo. -- Criterios para factorizar. -- Problemas resueltos. -- Problemas propuestos. -- M.C.D - M.C.M fracciones. -- Máximo común divisor. -- Mínimo común múltiplo. -- Expresiones fraccionarias. -- Radicación. -- Definición. -- Teoremas de radicación en R. -- Raíz algebraica. -- Raíz cuadrada de un polinomio. -- Radicales dobles. -- Racionalización. -- Concepto. -- Factor racionalizaste. -- Problemas resueltos. -- Problemas propuestos. -- Análisis combinatorio. -- Factorial de un numero natural. -- Propiedades. -- Semifactorial de un numero factorial. -- Ordenaciones. -- Permutaciones. -- Combinaciones. -- Binomio de newton. -- Números reales. -- Conceptos previos. -- Cuerpo de los números reales como un cuerpo ordenado y completo. -- Números complejos. -- Definición de números complejos. -- Operación definidas en C. -- Igualdad de números complejos. -- Representación geométrica. -- Cantidades imaginarias. -- Unidad imaginaria. --Potencias enteras de la humanidad imaginaria. -- Forma cartesiana o binomico de un complejo. -- Tipos de números complejos. -- Operación en la bonomico o cartesiana. -- Pontenciacion. -- Radicacion en C. -- Modulo o valor absoluto de un número complejo. -- Forma polar o trigonométrica en numero complejo. -- Representación fasioral. -- Raíz n-esima - raíz de la unidad. -- Raíces cubicas de la unidad real. -- Problemas resueltos. -- Problemas propuestos. --
Resumen: El presente libro trata del tema de Álgebra Generalización Matemática, aborda teorías y problemas resueltos.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Fecha de vencimiento Código de barras
Libros Libros Biblio. Andahuaylas UTEA E.P. Educación 512 I59 t-I 2000 (Navegar estantería(Abre debajo)) Disponible BAND18070016

Resumen histórico. -- Resumen histórico de las grandes etapas de la matemática. -- La etapa clásico del cercano oriente. -- Los matemáticos árabes y arabizados. -- Los primeros algebristas y los matemáticos del siglo XII al siglo XVI. -- Los matemáticos en el siglo XVII. -- El siglo XVII desarrollo del análisis. -- siglo XIX. -- Siglo XX. -- Las pirámides: Manifestaciones geométricas egipcia. -- Evariste Galois (1811 - 1832). -- Nociones preliminares. -- Adición. -- Sustracción. -- Multiplicación. -- División. -- Ecuaciones y despeje de incógnitas. -- Problemas propuestos. -- Matrices y determinantes. -- Definición previa. -- Exponente natural. -- Exponente cero. -- Exponente negativo. -- Exponente fraccionario. -- Potenciación. -- Definición. -- Radicación en R. -- Definición. -- Teoremas radicación. -- Radicales sucesivos. -- Problemas resueltos. -- Problemas Propuestos. -- Polinomios. -- Conceptos previos. -- Expresión matemática. -- Notación matemática. -- Expresiones algebraicas. -- Termino algebraico. -- Conjunto de valores algebraicos. -- Polinomios. -- Polinomio en una variable. -- Valor numérico en una expresión matemática. -- Cambio de variables. -- Grado de un polinomio. -- Polinomios especiales. -- Problemas resueltos. -- Problemas propuestos. -- División entera de polinomios. -- Identidad fundamental de división entera. -- Casos que se presentan en la división de polinomios. -- Métodos para dividir algebraicamente polinomios. -- Teoremas de ranatus descarte (teorema del resto). -- Problemas resueltos. -- Problemas propuestos. -- Divisibilidad. -- divisibilidad de polinomios cocientes notables. -- Problemas resueltos. -- Problemas propuestos. -- Factorización. -- Campo numérico. -- Polinomio sobre un campo. -- Criterios para factorizar. -- Problemas resueltos. -- Problemas propuestos. -- M.C.D - M.C.M fracciones. -- Máximo común divisor. -- Mínimo común múltiplo. -- Expresiones fraccionarias. -- Radicación. -- Definición. -- Teoremas de radicación en R. -- Raíz algebraica. -- Raíz cuadrada de un polinomio. -- Radicales dobles. -- Racionalización. -- Concepto. -- Factor racionalizaste. -- Problemas resueltos. -- Problemas propuestos. -- Análisis combinatorio. -- Factorial de un numero natural. -- Propiedades. -- Semifactorial de un numero factorial. -- Ordenaciones. -- Permutaciones. -- Combinaciones. -- Binomio de newton. -- Números reales. -- Conceptos previos. -- Cuerpo de los números reales como un cuerpo ordenado y completo. -- Números complejos. -- Definición de números complejos. -- Operación definidas en C. -- Igualdad de números complejos. -- Representación geométrica. -- Cantidades imaginarias. -- Unidad imaginaria. --Potencias enteras de la humanidad imaginaria. -- Forma cartesiana o binomico de un complejo. -- Tipos de números complejos. -- Operación en la bonomico o cartesiana. -- Pontenciacion. -- Radicacion en C. -- Modulo o valor absoluto de un número complejo. -- Forma polar o trigonométrica en numero complejo. -- Representación fasioral. -- Raíz n-esima - raíz de la unidad. -- Raíces cubicas de la unidad real. -- Problemas resueltos. -- Problemas propuestos. --

El presente libro trata del tema de Álgebra Generalización Matemática, aborda teorías y problemas resueltos.

No hay comentarios en este titulo.

para colocar un comentario.